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Abstract

In a number of fluid machinery applications, a simplified plane wave analysis of the problem of sound
transmission in a sheared mean flow is often sufficient for engineering purposes. Although there exists an
extensive literature on 3-D solution of this problem, a simplified non-isentropic plane wave formulation is
not seen. A quasi 1-D theory is presented in this paper in a general form encompassing non-uniform ducts,
compressible and axially non-uniform flows. An analytical solution of these equations is presented for
uniform ducts carrying an incompressible mean flow and the wave field is shown to consist of superposed
forward and backward acoustic waves and a hydrodynamic wave, which occur in general as coupled waves.
The propagation constants and the corresponding modal matrix that determines the degree of the coupling
are analyzed with reference to applications to some standard mean flow profile shapes and compared with
previous results.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of sound transmission in a hard-walled duct carrying a parallel sheared flow is a
classical one. The number of papers dealing with this problem in 3-D has been quite extensive,
mainly due to its importance in aircraft turbofan applications. A thorough account of the
previous work can be found in the article by Eversman [1]. On the other hand, in a number of fluid
see front matter r 2004 Elsevier Ltd. All rights reserved.
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machinery applications, a simplified plane wave analysis of the problem is often found to be
sufficient for engineering purposes. To simplify the solution of the problem further, the mean flow
is assumed to have a uniform velocity profile over the duct cross section, even though the actual
profile may vary from a parabolic shape characterizing a laminar flow, to a flat shape
characterizing a fully developed turbulent flow. For an inviscid fluid, this results in the classical
convected isentropic wave equation in 1D, which yields 1=ð1þ M0Þ and �1=ð1 � M0Þ

as propagation constants for the forward and backward sound waves, where M0 denotes
the Mach number of the average mean flow velocity over the duct cross-section. A correction
to these propagation constants for the effect of the mean flow velocity profile was derived in
Ref. [2] by maintaining the isentropic condition for the wave propagation. This shows that the
correction due to the mean velocity profile is of the order O½M

2

0� and that the predictions of the 1-
D theory are in close agreement with the results of 3-D solutions for the fundamental mode
propagation.

Strictly speaking, the condition of isentropic wave propagation is valid for the ideal case of a
uniform mean flow profile, where it is tantamount to the energy equation. This is not true
for a parallel sheared mean flow and the conservation law for energy should be used for the
precise formulation of the problem. It is the purpose of the present paper to present this
formulation which, to the author’s knowledge, has not appeared elsewhere. The paper will derive
a quasi-1-D energy equation that includes the mean flow velocity profile in the cross-sectional
average sense. The continuity and momentum equations are also formulated similarly and are
essentially similar to those given in Ref. [2]. The governing equations are given, for future
reference, in a general form encompassing ducts having non-uniform cross section and axially
non-uniform mean flow. Analytical solution of these equations is presented for the case of
uniform ducts carrying an incompressible mean flow of an arbitrary velocity profile. The
propagation constants for this case are derived in closed form and compared with the previous
results.
2. Quasi-1-D conservation equations

Consider a straight hard-walled uniform duct carrying a steady axial mean flow. The
propagation of plane sound waves in this fluid flow is governed by the linearized continuity,
momentum and energy equations. First, consider the conservation equations for mass and axial
momentum. Neglecting the viscosity effects on the wave motion, but allowing for an arbitrary
mean flow velocity profile, these can be expressed, respectively, in quasi-1-D form as [2]
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Here, S denotes the cross-sectional area of the duct, x denotes the duct axis and t denotes the time.
The fluid density, r ¼ r0+r0; the fluid pressure, p ¼ p0 þ p0; and the particle velocity in the axial
direction, v ¼ v0 þ v0; are assumed to consist of acoustic fluctuations r0; p0 and v0; superimposed
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on the time-averaged mean values r0; p0 and v0; respectively, the prime (0) denoting a fluctuating
part and the subscript ‘0’ denoting a time-averaged mean part throughout the paper. The acoustic
fluctuations are assumed to be small to first order and functions of t and x only, and r0 and p0 are
assumed to be uniform over the duct cross section.

Upon carrying out the integrations over the duct cross section, Eqs. (1) and (2) can be expressed
as
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þ v̄
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¼ 0; (3)
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respectively. Here, an overbar denotes averaging over the duct cross-sectional area.
Eqs. (3) and (4) are next expanded into mean and fluctuating parts and the products of acoustic

perturbations are neglected as second-order small quantities. This usual linearization procedure
yields the acoustic continuity and momentum equations as
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respectively, where the parameter b and v̄0; the cross-section averaged mean flow velocity, are
defined by

ð1þ bÞv̄2
0 ¼

1

S

Z
S

v2
0 dS; v̄0 ¼

1

S

Z
S

v0 dS: (7)

The derivation of Eqs. (5) and (6) assumes that Eqs. (3) and (4) are satisfied identically by the
mean flow. Accordingly, from the continuity equation, it is deduced that the product Sv̄0r0 is
constant and that ðd=dxÞ½ð1 þ bÞSr0v̄2

0� þ Sðd=dxÞp0 ¼ 0 from the momentum equation.
Now consider the energy equation. Again, assuming plane wave motion and neglecting the

visco-thermal effects, but allowing similarly for an arbitrary mean flow velocity profile, this can be
expressed in quasi-1-D form as
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where

e ¼ u þ 1
2

v2; h0
¼ e þ

p

r
: (9)

Here, e and h0 denote, respectively, the specific total energy and the specific stagnation enthalpy of
the fluid and u denotes the specific internal energy. The objective of the subsequent analysis is to
transform Eq. (8) into a form that gives, upon linearization, an equation that closes Eqs. (5) and
(6) for the determination of r0; p0 and v0:
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Upon carrying out the integrations over the duct cross section, Eq. (8) can be
written as
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where

ē ¼ u þ 1
2
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When Eqs. (3) and (4) are substituted, Eq. (10) simplifies to
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which, upon using the perfect gas state equation ðg� 1Þrdu ¼ dp � ðp=rÞdr; can be
expressed as

S
qp

qt
þ v̄

qp

qx

� �
þ gp

qSv̄

qx
þ
g� 1

2
S

q
qt
½rðv2 � v̄2Þ� þ

q
qx

½Srðv3 � v̄3Þ�

�

�2v̄
q
qx

½Srðv2 � v̄2Þ�

�
¼ 0; ð13Þ

where g denotes the ratio of the specific heat coefficients. It can be shown that Eq. (13) will hold
for any real gas if the factor g� 1 is replaced by ðg� 1Þ=kT ; and the factor gp is replaced by
ðg� 1Þrcp=k2T ; where k denotes the isobaric compressibility, T denotes the temperature and cp is
the specific heat coefficient at constant pressure.

Eq. (13) can be linearized as usual by partitioning into mean and fluctuating parts,
assuming the mean part is satisfied by the mean flow and neglecting the products of
acoustic perturbations as second-order small quantities. This process yields for the acoustic
fluctuations
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where the parameter w is defined by

ð1 þ wÞv̄3
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1
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Z
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This completes the derivation of the basic equations, Eqs. (5), (6) and (14), that govern the
propagation of plane sound waves in a duct carrying a steady mean flow having an
arbitrary velocity profile. For a non-uniform duct, or a uniform duct carrying an axially
non-uniform mean flow (v0 is a function of x also), or a duct carrying a compressible mean
flow, these equations do not admit an obvious analytical solution and have to be solved
numerically.
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For a uniform duct carrying an axially uniform incompressible mean flow, Eqs. (5), (6) and (14)
simplify to
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respectively. Analytical solution of these equations is presented in the next section.
To the author’s knowledge, the foregoing quasi-1-D theory has not appeared elsewhere.

As can be expected, the continuity equation of this theory, Eq. (5) or (16), is same
as the continuity equation for the uniform mean flow velocity profile case, and, for b ¼ 0;
the momentum equation, Eq. (6) or (17), reduces to the momentum equation for that
ideal case. On the other hand, for b ¼ 0 and w ¼ 0; the energy equation (14) becomes a
statement of isentropic propagation. This is discussed in some detail in Ref. [3]. It is much
simpler to show this in Eq. (18). As can be readily verified, for b ¼ 0 and w ¼ 0; Eqs. (18) and (16)
yield the well-known isentropic relationship p0 ¼ c2

0r
0; where c0 denotes the speed of sound,

c2
0 ¼ gp0=r0:
3. Plane sound waves in a uniform duct carrying incompressible sheared mean flow

From the perfect gas state equation ðp=cvÞds ¼ dp � c2
0 dr; where cv is the specific heat

coefficient at constant volume and s denotes the specific entropy, it follows that, when b or w is
different from zero, the entropy fluctuation does not vanish and, therefore, the acoustic pressure
and density are strictly related by [5]

p0 ¼ c2
0r

0 þ �; (19)

where e denotes an additional pressure fluctuation. For relatively flat mean flow
velocity profiles or low subsonic Mach numbers, e will be a small fluctuating quantity,
as b or w give rise to terms that are proportional to square or cube of the average mean
flow velocity.

In dealing with Eqs. (16)–(18), it is also convenient to define the following
decompositions:

p0 ¼ pþ þ p�; r0c0v0 ¼ pþ � p�: (20)

In the uniform mean flow profile case, these decompositions uncouple Eqs. (16)–(18) into waves
traveling in the forward (þx) and backward directions, which are represented in Eq. (20) by the
pressure components distinguished by the superscripts ‘þ’ and ‘�’, respectively. For an arbitrary
mean flow velocity profile, adhering to this decomposition is expected to incur a simplicity similar
to the solution of the governing equations.
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Upon substituting Eqs. (19) and (20) and assuming expð�iotÞ time dependence for all
fluctuating quantities, Eqs. (16)–(18) can be expressed in the following state space form:
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Here M0 ¼ v̄0=c0 is the Mach number of the average mean flow velocity over the duct cross
section, k ¼ o=c0 is the wavenumber and a ¼ ðw� 3bÞ=2: Although straightforward, after some
cumbersome manipulations, Eq. (21) can be re-cast as
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D ¼ bM
2

0g� aðg� 1ÞM
2

0 þ ð1 � M0Þð1 þ M0Þ: (24)

The general solution of Eq. (22) can be expressed in the wave transfer form as (the time
dependence of the state variables being suppressed)
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where the transfer matrix is given by

TðxÞ ¼ U

eikKþx 0 0

0 eikK�x 0

0 0 eikmx

2
64

3
75U�1: (26)

Here, Kþ; K� and m denote the propagation constants, which are equal to the eigenvalues of
matrix M; and U is the modal matrix whose columns are the corresponding eigenvectors. Again,
after some cumbersome algebra, the propagation constants can be shown to be given by the roots
of the polynomial

QðlÞ ¼ 2ðMl� 1Þ½½1þ ðgb� 1ÞM
2

0�l
2
þ 2M0l� 1� � 2ðg� 1ÞaM

3

0l
3: (27)

Since this is a cubic polynomial, in theory, the propagation constants can be expressed
analytically. However, except for the case a ¼ 0; the roots of Eq. (27) do not come out in useful
analytic forms. The case a ¼ 0; however, allows factorization and simple expressions are found for
the roots. Fortunately, this case still covers the standard mean flow profile types and will be
considered separately in what follows. The analysis is limited to subsonic mean flow velocities.

3.1. Uniform mean flow

It is convenient to begin with this ideal case, for which b ¼ 0 and w ¼ 0; and the matrix M

reduces to

M ¼

1=ð1 þ M0Þ 0 0

0 �1=ð1� M0Þ 0

0 0 1=M0

2
64

3
75: (28)

Therefore, in this case, the propagation constants are simply,

Kþ ¼
1

1þ M0

; K� ¼
�1

1� M0

; m ¼
1

M0

; (29)

and the modal matrix U (the first, second and third columns of which always correspond to Kþ;
K� and m; respectively, in this paper) constitutes a unit matrix. Therefore, Kþand K� are the
classical propagation constants quoted in the Introduction and correspond to acoustic waves
traveling in forward (þx) and backward directions, respectively, with the velocity of speed of
sound relative to the mean flow. The third propagation constant, m; represents a hydrodynamic
wave that travels with the mean flow. In this case it is trivial, as the propagation is isentropic, that
is, p0 ¼ c2

0r
0; and, therefore, e ¼ 0:

Eq. (25) shows that the plane sound wave field in a duct carrying a sheared flow will, in general,
consist of superimposed waves having the propagation constants Kþ; K� and m: In the case of a
uniform mean flow, the forward and backward sound waves are uncoupled and, therefore, can be
associated physically with sources and boundary reflections, respectively. In the case of a sheared
mean flow, however, there will always be some degree of coupling, which implies that the plane
sound wave field generated by a source will, strictly speaking, propagate with continuous
reflections due to cross-sectional inhomogeneity of a sheared mean flow. The cases considered
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next show that under certain conditions such reflections are weak and their effect on the plane
sound wave field may not be discernible.
3.2. ‘1/n’th power-law turbulent flow

The ‘1=n’th power law is commonly used in modelling the velocity profiles in turbulent flows.
The profile parameters b; w and a for this type of a flow velocity profile are shown in Fig. 1 as
functions of n. It is seen that the parameter a tends to zero as n is increases. For n45; which is the
usual application range of the ‘1=n’ power law, the approximation a ¼ 0 holds true with less than
0.2% absolute error. Thus, for this type of a mean flow velocity profile, the present theory can be
implemented, without any significant loss of accuracy, by taking a ¼ 0: This is convenient, as, for
a ¼ 0; the matrix M simplifies to
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2
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; (30)
Fig. 1. Cross-sectional parameters of ‘1=n’th power law turbulent flow.
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where D ¼ 1 � ð1� gbÞM
2

0; and the propagation constants are given by

Kþ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gbM
2

0

q
þ M0

; (31)

K� ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gbM
2

0

q
� M0

; (32)

m ¼
1

M0

: (33)

Here, M0 ¼ 2n2M0=ð1 þ nÞð1þ 2nÞ; where M0 denotes the Mach number of the mean flow
velocity at the duct centre. The corresponding modal matrix U; however, does not lend itself to an
analytical form that is simple enough for presentation here. However, some general results can be
deduced by numerical analysis of the eigenvectors of matrix M. For this purpose, it suffices to
consider the parameter b in the range bo1=3; as b remains in this range for n45 and the larger
the b; the greater the deviation of the eigenvectors from unit vectors. For n45; therefore, the
largest deviation occurs for b ¼ 1=3: The modal matrix corresponding to this most critical case is

for M0 ¼ 0:1:

U ¼

1 �4:977 	 10�4 �1:661 	 10�3

�4:977 	 10�4 1 �1:661 	 10�3

�1:331 	 10�3 �1:331 	 10�3 1

2
64

3
75; (34)

and for M0 ¼ 0:7:

U ¼

0:998 �0:02 �0:07

�0:02 0:998 �0:07

�0:06 �0:06 0:995

2
64

3
75; (35)

where the usual value of g ¼ 7=5 is used for the ratio of the specific heat coefficients. For relatively
small M0; the modal matrix U retains the unit matrix form, as expected. For M0 ¼ 0:7; the
deviation of the modal matrix from the unit matrix is less than 6% for the acoustic modes, which
are characterized by the propagation constants Kþ and K�; and less than 7% for the
hydrodynamic mode. This shows that, for a turbulent mean flow having a ‘1=n’ power-law
velocity profile, Eq. (22) can be uncoupled without significant loss of accuracy and its solution can
be expressed as

pþðxÞ ¼ eikKþxpþð0Þ; p�ðxÞ ¼ eikK�xp�ð0Þ; eðxÞ ¼ eikx=M0eð0Þ; (36)

up to subsonic Mach numbers as high as M0 ¼ 0:7 or 0.8. Thus, the Kþ and K� waves can be
characterized as forward and backward traveling acoustic waves, respectively, as in the case of a
uniform mean flow velocity profile. The hydrodynamic wave can propagate at speeds comparable
with the speed of sound for relatively high subsonic M0: Note that, to this approximation, these
waves exist if they exist at the origin, x ¼ 0; say. Therefore, if the propagation is isentropic at the
origin, then there will be no hydrodynamic wave.
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3.3. Laminar mean flow

For a Poiseuille-type laminar mean flow having a parabolic velocity profile, a ¼ 0 and b ¼ 1=3
and, therefore, this case is included in the foregoing results given for ‘1=n’th power law turbulent
mean flow. The propagation constants for this case can be deduced from Eqs. (31)–(33) and are
given explicitly for reference purposes:

K
 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ gM
2

0=3
q


 M0

; m ¼
1

M0

: (37)

Here, M0 ¼ M0=2; where M0 denotes the Mach number of the mean flow velocity at the duct
centre.

3.4. Core flow

For a uniform duct carrying an axially uniform core flow, the present theory can be applied by
taking b ¼ S=Sc � 1; w ¼ ðS=ScÞ

2
� 1 and M0 ¼ ðSc=SÞMc; where S and Sc denote the cross-

sectional area of the duct and the core, respectively, and Mc denotes the Mach number of the core
flow velocity. Elimination of the ratio S=Sc between b and w yields the relationship a ¼ bðb� 1Þ=2
and, therefore, the results of Section 3.2 can be invoked in this case if S=Sc ¼ 2: This area ratio,
however, corresponds to b ¼ 1; and the solution of Eq. (22) will not decouple for the Kþ; K� and
m waves unless the Mach number of the core flow velocity is low enough. A numerical analysis
similar to that shown in Section 3.2 shows that, for b ¼ 1; the deviation of the modal matrix from
the unit matrix form is less than about 6% for M0 ¼ 0:35; or core flow velocity Mach number of
Mc ¼ 0:7:

Analysis of ducts having core flow of area ratio other than S=Sc ¼ 2 requires the numerical
solution of Eq. (27) for the propagation constants. The results of such solutions are presented in
Figs. 2 and 3 for b ¼ 0–6 and forM0 ¼ 0–0.8. As can be seen, whilst Kþ decreases approximately
linearly with b and M0; the backward wave propagation constant, K�; is not much sensitive
to these parameters for b42 or 3, and the hydrodynamic wave propagation constant, m; for bo2
or 3.

To show the degree of coupling between the Kþ; K� and m waves in these cases, the elements of
the columns of the modal matrix U are given in Figs. 4 and 5 as functions of b and M0: These
results show that, for M0o0:1 or 0.2, the modal matrix can be approximated by the unit matrix
for all practical purpose in the considered range of b: In this range of the parameters, solution of
Eq. (22) may be approximated by Eq. (36). Some coupling is observed for relatively larger values
of b andM0; however, the eigenvectors corresponding to the propagation constants K� and m are
rather insensitive to changes in these parameters.
4. Conclusion

A quasi-1-D theory of plane sound wave propagation in a steady shear flow is presented. The
governing equations are derived in a generality encompassing non-uniform ducts, compressible and
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Fig. 2. Variation of the propagation constants with the parameter b: (a) Kþ; (b) K� and (c) m:
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axially non-uniform flows. An analytical solution of these equations is presented for uniform ducts
carrying an incompressible mean flow. In this case, the characteristics of the plane wave field are
determined by three parameters, that is, b; M0 and a; and the wave field consists of the superposition
of forward and backward acoustic waves and a hydrodynamic wave, which occur as coupled waves.
The propagation constants and the corresponding modal matrix that determines the degree of the
coupling are analyzed with reference to applications to some standard mean flow profile shapes.

The present theory may be considered as an improvement of a previous analysis [2] which is based on
the use of the isentropic state equation in place of the energy conservation law.
The isentropic theory of Ref. [2] predicts an acoustic wave field consisting of uncoupled forward and
backward waves, the propagation constants of which are given, for any mean flow velocity profile, by

K
 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bM
2

0

q

 M0

: (38)
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Fig. 3. Variation of the propagation constants with the Mach number of the cross-sectional average of mean flow

velocity: (a) Kþ; (b) K� and (c) m:
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This is the same as Eqs. (31) and (32) with g ¼ 1: So, in the case of a ¼ 0; the improvement provided by
the present theory pertains to amplification of b by about 30–40%. The effect of this on the
propagation constants is negligible for relatively low subsonic M0; and barely discernible for larger
Mach numbers. Therefore, for the examples considered in Ref. [2], all of which conform to the
condition a ¼ 0; the present theory provides only slight improvements. For example, for a core flow
with b ¼ 1 and M0 ¼ 0:35; the present theory predicts Kþ ¼ 0:698 and K� ¼ �1:365; the
corresponding predictions of Eq. (38) being 0.709 and �1.409, respectively. An exact value for Kþ

that is based on a circular duct formulation is 0.68 [4].
In general, insofar as the prediction of the acoustic propagation constants is concerned, Eq. (38)

can be considered to be a good approximation to the present theory. However, the present
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Fig. 4. Variation of the elements of the columns of modal matrix U with the Mach number of the cross-sectional

averaged mean flow velocity: (a) Kþ column, (b) K� column, (c) m column; ______ Kþ element, - - - - K� element,

– – – – m element.
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quasi-1-D theory is more accurate and provides a more complete representation of the plane wave
field in a shear flow.

One of the referees has pointed out that the scale which influences the degree to which plane
waves remain plane in a shear flow is the ratio of wavelength to something like boundary layer
thickness, and queried the range of this ratio over which a plane wave assumption is reasonable.
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Fig. 5. Variation of the elements of the columns of modal matrix U with b: (a) Kþ column, (b) K� column, (c) m
column; ______ Kþ element, - - - - K� element, – – – m element.

E. Dokumaci / Journal of Sound and Vibration 284 (2005) 551–565564
A rigorous treatment of this issue is strictly out of scope of the present analysis. However, the
question is stimulating and warrants a comment beyond the statement that the propagation
constants of the present theory are in close agreement with the results of 3-D solutions for the
fundamental mode propagation. Refraction due to shear flow changes the uniform mean flow
acoustic pressure distribution, with the pressure at the wall becoming higher than that at the
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center of the duct for forward propagation and lower for backward (against mean flow)
propagation. A problem which can be adopted to study this effect in a reasonably simple setting is
the problem of 2-D acoustic wave propagation in a linear boundary layer above a plane wall. This
problem is considered by Pridmore-Brown [6]. His approximate solution enables calculation of
the level difference between the sound pressure at the wall and at a distance L from the wall for
the forward propagation of the lowest mode for a given Helmholtz number kL, when the Mach
number is increasing linearly from 0 at the wall to M1 at distance L from the wall. Strictly
speaking, the approximate solution of Ref. [6] is valid asymptotically for large kL=M1; however,
the results given for level differences can be extrapolated to kL ¼ 0: Thus extrapolated results
indicate that, for the level difference to be less than 0.5 dB, the Helmholtz number must be less
than about unity ðkLo1Þ for M1 ¼ 0:1; and less than about 0.2 (kLo0:2) for M1 ¼ 0:5: So, it
appears that the range of the ratio of the wavelength to boundary layer thickness over which the
plane wave assumption is reasonable may be stated, approximately, as l=L42p for M1 ¼ 0:1; and
l=L410p for M1 ¼ 0:5: The frequencies that are of interest in most fluid machinery are in general
within these ranges; however, these preliminary results should be treated with caution, as they are
based on the assumption that the results of Ref. [6] can be extrapolated to kL ¼ 0:
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